翻訳と辞書
Words near each other
・ Liège–Bastogne–Liège
・ Liège–Maastricht railway
・ Lièpvre
・ Lières
・ Lièvremont
・ Lié Louis Périn-Salbreux
・ Liébana
・ Liébana (Vino de la Tierra)
・ Liédena
・ Liédson
・ Liégeois
・ Liégeois (cocktail)
・ Liéhon
・ Liénard
・ Liénard equation
Liénard–Chipart criterion
・ Liénard–Wiechert potential
・ Liéramont
・ Liérganes
・ Liétor
・ Liévano–Brutus treaty
・ Liévans
・ Liévin
・ Liévin Congress
・ Liévin De Winne
・ Liévin Lerno
・ Liézey
・ Liêm Hoang Ngoc
・ Liêm Thủy
・ Liên Chiểu District


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Liénard–Chipart criterion : ウィキペディア英語版
Liénard–Chipart criterion
In control system theory, the Liénard–Chipart criterion is a stability criterion modified from Routh–Hurwitz stability criterion, proposed by A. Liénard and M. H. Chipart. This criterion has a computational advantage over Routh–Hurwitz criterion because they involve only about half the number of determinant computations.
== Algorithm ==

Recalling the Routh–Hurwitz stability criterion, it says that a necessary and sufficient condition for all the roots of the polynomial with real coefficients
::f(z) = a_0 z^n + a_1 z^ + \cdots + a_n \, (a_0 > 0)
to have negative real parts (i.e. f is Hurwitz stable) is that
:: \Delta_1 > 0,\, \Delta_2 > 0, \ldots, \Delta_n > 0,
where \Delta_i is the ''i''-th principal minor of the Hurwitz matrix associated with f.
Using the same notation as above, the Liénard–Chipart criterion is that f is Hurwitz-stable if and only if any one of the four conditions is satisfied:
# a_n>0,a_>0, \ldots;\, \Delta_>0,\Delta_3>0,\ldots
# a_n>0,a_>0, \ldots;\, \Delta_>0,\Delta_4>0,\ldots
# a_n>0,a_>0,a_ >0, \ldots;\, \Delta_1>0,\Delta_3>0,\ldots
# a_n>0,a_>0,a_ >0, \ldots;\, \Delta_2>0,\Delta_4>0,\ldots
Henceforth, one can see that by choosing one of these conditions, the determinants required to be evaluated are thus reduced.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Liénard–Chipart criterion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.